Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide.

نویسندگان

  • J N Young
  • R E M Rickaby
  • M V Kapralov
  • D A Filatov
چکیده

Rubisco, the most abundant enzyme on the Earth and responsible for all photosynthetic carbon fixation, is often thought of as a highly conserved and sluggish enzyme. Yet, different algal Rubiscos demonstrate a range of kinetic properties hinting at a history of evolution and adaptation. Here, we show that algal Rubisco has indeed evolved adaptively during ancient and distinct geological periods. Using DNA sequences of extant marine algae of the red and Chromista lineage, we define positive selection within the large subunit of Rubisco, encoded by rbcL, to occur basal to the radiation of modern marine groups. This signal of positive selection appears to be responding to changing intracellular concentrations of carbon dioxide (CO(2)) triggered by physiological adaptations to declining atmospheric CO(2). Within the ecologically important Haptophyta (including coccolithophores) and Bacillariophyta (diatoms), positive selection occurred consistently during periods of falling Phanerozoic CO(2) and suggests emergence of carbon-concentrating mechanisms. During the Proterozoic, a strong signal of positive selection after secondary endosymbiosis occurs at the origin of the Chromista lineage (approx. 1.1 Ga), with further positive selection events until 0.41 Ga, implying a significant and continuous decrease in atmospheric CO(2) encompassing the Cryogenian Snowball Earth events. We surmise that positive selection in Rubisco has been caused by declines in atmospheric CO(2) and hence acts as a proxy for ancient atmospheric CO(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco‐deficient mutants of Arabidopsis

Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment ...

متن کامل

A 40-million-year history of atmospheric CO(2).

The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 ...

متن کامل

Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles.

Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)-photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO(2) assimilation. The high CO(2) and (initially) O(2)-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO(2...

متن کامل

Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records

[1] Long-term alkenone-based pCO2 records are widely applied in paleoclimate evaluations. These pCO2 estimates are based on records of the carbon isotope fractionation that occurs during marine haptophyte photosynthesis (ep37:2). In addition to the concentration of aqueous CO2 (CO2(aq)) the magnitude of ep37:2 is also influenced by algal growth rates and cell geometry. To date, the influence of...

متن کامل

Organic Carbon and Organic Matter Levels in Sediments of the Strait of Hormoz, the Persian Gulf

Total organic carbon has a major influence on both the chemical and biological processesthat take place in sediments. Algal bloom is one of the organic carbon levels in aquatic ecosystems. In 2009 algal bloom occurred in the Hormozgan province and prolonged for months, which finally setteled down in 2010. In this study the variations of total organic carbon (TOC), organic matter (TOM) and tot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 367 1588  شماره 

صفحات  -

تاریخ انتشار 2012